250 research outputs found

    Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle

    Get PDF
    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy

    Seeds for effective oligonucleotide design

    Get PDF
    Background: DNA oligonucleotides are a very useful tool in biology. The best algorithms for designing good DNA oligonucleotides are filtering out unsuitable regions using a seeding approach. Determining the quality of the seeds is crucial for the performance of these algorithms.\ud Results: We present a sound framework for evaluating the quality of seeds for oligonucleotide design. The F-score is used to measure the accuracy of each seed. A number of natural candidates are tested: contiguous (BLAST-like), spaced, transitions-constrained, and multiple spaced seeds. Multiple spaced seeds are the best, with more seeds providing better accuracy. Single spaced and transition seeds are very close whereas, as expected, contiguous seeds come last. Increased accuracy comes at the price of reduced efficiency. An exception is that single spaced and transitions-constrained seeds are both more accurate and more efficient than contiguous ones.\ud Conclusions: Our work confirms another application where multiple spaced seeds perform the best. It will be useful in improving the algorithms for oligonucleotide desig

    Antimalarial Exposure Delays Plasmodium falciparum Intra-Erythrocytic Cycle and Drives Drug Transporter Genes Expression

    Get PDF
    BACKGROUND: Multi-drug resistant Plasmodium falciparum is a major obstacle to malaria control and is emerging as a complex phenomenon. Mechanisms of drug evasion based on the intracellular extrusion of the drug and/or modification of target proteins have been described. However, cellular mechanisms related with metabolic activity have also been seen in eukaryotic systems, e.g. cancer cells. Recent observations suggest that such mechanism may occur in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We therefore investigated the effect of mefloquine exposure on the cell cycle of three P. falciparum clones (3D7, FCB, W2) with different drug susceptibilities, while investigating in parallel the expression of four genes coding for confirmed and putative drug transporters (pfcrt, pfmdr1, pfmrp1 and pfmrp2). Mefloquine induced a previously not described dose and clone dependent delay in the intra-erythrocytic cycle of the parasite. Drug impact on cell cycle progression and gene expression was then merged using a non-linear regression model to determine specific drug driven expression. This revealed a mild, but significant, mefloquine driven gene induction up to 1.5 fold. CONCLUSIONS/SIGNIFICANCE: Both cell cycle delay and induced gene expression represent potentially important mechanisms for parasites to escape the effect of the antimalarial drug

    Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over its life cycle, the <it>Plasmodium falciparum </it>parasite is exposed to different environmental conditions, particularly to variations in O<sub>2 </sub>pressure. For example, the parasite circulates in human venous blood at 5% O<sub>2 </sub>pressure and in arterial blood, particularly in the lungs, at 13% O<sub>2 </sub>pressure. Moreover, the parasite is exposed to 21% O<sub>2 </sub>levels in the salivary glands of mosquitoes.</p> <p>Methods</p> <p>To study the metabolic adaptation of <it>P. falciparum </it>to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.</p> <p>Results</p> <p>Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.</p> <p>Conclusions</p> <p>These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of <it>P. falciparum</it>. This study provides a better understanding of the adaptive capabilities of <it>P. falciparum </it>to environmental changes and may lead to the development of novel therapeutic targets.</p

    Rich-Club Phenomenon in the Interactome of P. falciparum—Artifact or Signature of a Parasitic Life Style?

    Get PDF
    Recent advances have provided a first experimental protein interaction map of the human malaria parasite P. falciparum, which appears to be remotely related to interactomes of other eukaryotes. Here, we present a comparative topological analysis of this experimentally determined web with a network of conserved interactions between proteins in S. cerevisiae, C. elegans and D. melanogaster that have an ortholog in Plasmodium. Focusing on experimental interactions, we find a significant presence of a “rich-club,” a topological characteristic that features an “oligarchy” of highly connected proteins being intertwined with one another. In complete contrast, the network of interologs and particularly the web of evolutionary-conserved interactions in P. falciparum lack this feature. This observation prompts the question of whether this result points to a topological signature of the parasite's biology, since experimentally obtained interactions widely cover parasite-specific functions. Significantly, hub proteins that appear in such an oligarchy revolve around invasion functions, shaping an island of parasite-specific activities in a sea of evolutionary inherited interactions. This presence of a biologically unprecedented network feature in the human malaria parasite might be an artifact of the quality and the methods to obtain interaction data in this organism. Yet, the observation that rich-club proteins have distinctive and statistically significant functions that revolve around parasite-specific activities point to a topological signature of a parasitic life style

    Comparative Gene Expression Profiling of P. falciparum Malaria Parasites Exposed to Three Different Histone Deacetylase Inhibitors

    Get PDF
    Histone deacetylase (HDAC) inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA; Vorinostat®) and a 2-aminosuberic acid derivative (2-ASA-9), all caused profound transcriptional effects, with ∼2–21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1–5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents

    Identification of Plasmodium vivax Proteins with Potential Role in Invasion Using Sequence Redundancy Reduction and Profile Hidden Markov Models

    Get PDF
    BACKGROUND: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. RESULTS: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. CONCLUSIONS: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria

    A Genetic Screen for Attenuated Growth Identifies Genes Crucial for Intraerythrocytic Development of Plasmodium falciparum

    Get PDF
    A majority of the Plasmodium falciparum genome codes for genes with unknown functions, which presents a major challenge to understanding the parasite's biology. Large-scale functional analysis of the parasite genome is essential to pave the way for novel therapeutic intervention strategies against the disease and yet difficulties in genetic manipulation of this deadly human malaria parasite have been a major hindrance for functional analysis of its genome. Here, we used a forward functional genomic approach to study P. falciparum and identify genes important for optimal parasite development in the disease-causing, intraerythrocytic stages. We analyzed 123 piggyBac insertion mutants of P. falciparum for proliferation efficiency in the intraerythrocytic stages, in vitro. Almost 50% of the analyzed mutants showed significant reduction in proliferation efficiency, with 20% displaying severe defects. Functional categorization of genes in the severely attenuated mutants revealed significant enrichment for RNA binding proteins, suggesting the significance of post-transcriptional gene regulation in parasite development and emphasizing its importance as an antimalarial target. This study demonstrates the feasibility of much needed forward genetics approaches for P. falciparum to better characterize its genome and accelerate drug and vaccine development

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin

    Computational Analysis of Constraints on Noncoding Regions, Coding Regions and Gene Expression in Relation to Plasmodium Phenotypic Diversity

    Get PDF
    Malaria-causing Plasmodium species exhibit marked differences including host choice and preference for invading particular cell types. The genetic bases of phenotypic differences between parasites can be understood, in part, by investigating constraints on gene expression and genic sequences, both coding and regulatory.We investigated the evolutionary constraints on sequence and expression of parasitic genes by applying comparative genomics approaches to 6 Plasmodium genomes and 2 genome-wide expression studies. We found that the coding regions of Plasmodium transcription factor and sexual development genes are relatively less constrained, as are those of genes encoding CCCH zinc fingers and invasion proteins, which all play important roles in these parasites. Transcription factors and genes with stage-restricted expression have conserved upstream regions and so do several gene classes critical to the parasite's lifestyle, namely, ion transport, invasion, chromatin assembly and CCCH zinc fingers. Additionally, a cross-species comparison of expression patterns revealed that Plasmodium-specific genes exhibit significant expression divergence.Overall, constraints on Plasmodium's protein coding regions confirm observations from other eukaryotes in that transcription factors are under relatively lower constraint. Proteins relevant to the parasite's unique lifestyle also have lower constraint on their coding regions. Greater conservation between Plasmodium species in terms of promoter motifs suggests tight regulatory control of lifestyle genes. However, an interspecies divergence in expression patterns of these genes suggests that either expression is controlled via genomic or epigenomic features not encoded in the proximal promoter sequence, or alternatively, the combinatorial interactions between motifs confer species-specific expression patterns
    corecore